Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38323905

RESUMO

Cardiac fibrosis is considered as unbalanced extracellular matrix (ECM) production and degradation, contributing to heart failure. Short-chain acyl-CoA dehydrogenase (SCAD) negatively regulates pathological cardiac hypertrophy. The purpose of this study was to investigate the possible role of SCAD in cardiac fibrosis. In-vivo experiments were performed on spontaneously hypertensive rats (SHR) and SCAD knockout mice. The cardiac tissues of hypertensive patients with cardiac fibrosis were used for measurement of SCAD expression. In-vitro experiments, with angiotensin II (Ang II), SCAD siRNA and adenovirus-SCAD (Ad-SCAD) were performed using cardiac fibroblasts (CFs). SCAD expression was significantly decreased in the left ventricles of SHR. Notably, swim training ameliorated cardiac fibrosis in SHR in association with the elevation of SCAD. The decrease in SCAD protein and mRNA expression levels in SHR CFs were in accordance with those in the left ventricular myocardium of SHR. In addition, SCAD expression was downregulated in CFs treated with Ang II in vitro, and SCAD siRNA interference induced the same changes in cardiac fibrosis as Ang II-treated CFs, while Ad-SCAD treatment significantly reduced the Ang II-induced CFs proliferation, α-SMA and collagen expression. In SHR infected with Ad-SCAD, the cardiac fibrosis of the left ventricle was significantly decreased. On the other hand, cardiac fibrosis occurred in conventional SCAD knockout mice. SCAD immunofluorescence intensity of cardiac tissue in hypertensive patients with cardiac fibrosis was lower than that of healthy subjects. All together, the current experimental outcomes indicate that SCAD has a negative regulatory effect on cardiac fibrosis and support its potential therapeutic target for suppressing cardiac fibrosis.

2.
Adv Sci (Weinh) ; 11(9): e2301358, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38145358

RESUMO

RNA interference (RNAi) is a powerful tool for understanding and manipulating signaling pathways in plant science, potentially facilitating the accelerated development of novel plant traits and crop yield improvement. The common strategy for delivering siRNA into intact plants using agrobacterium or viruses is complicated and time-consuming, limiting the application of RNAi in plant research. Here, a novel delivery method based on mesoporous silica nanoparticles (MSNs) is reported, which allows for the efficient delivery of siRNA into mature plant leaves via topical application without the aid of mechanical forces, achieving transient gene knockdown with up to 98% silencing efficiency at the molecular level. In addition, this method is nontoxic to plant leaves, enabling the repeated delivery of siRNA for long-term silencing. White spots and yellowing phenotypes are observed after spraying the MSN-siRNA complex targeted at phytoene desaturase and magnesium chelatase genes. After high light treatment, photobleaching phenotypes are also observed by spraying MSNs-siRNA targeted at genes into the Photosystem II repair cycle. Furthermore, the study demonstrated that MSNs can simultaneously silence multiple genes. The results suggest that MSN-mediated siRNA delivery is an effective tool for long-term multi-gene silencing, with great potential for application in plant functional genomic analyses and crop improvement.


Assuntos
Nanopartículas , Dióxido de Silício , RNA Interferente Pequeno/genética , Inativação Gênica , Interferência de RNA , Plantas
3.
Stem Cell Res ; 72: 103202, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37708613

RESUMO

The transient receptor potential vanilloid subfamily 1 (TRPV1) is a polymodal nociceptor that is highly expressed in sensory nerves. Activation of TRPV1 receptors excites primary afferent nociceptors by opening cation channels, allowing the influx of Na+ and Ca2+ ions into the cytoplasm. Here, a TRPV1 knockout human embryonic stem cell line was generated using the CRISPR/Cas9 genome-editing technology to further study the function of TRPV1. The cell line confirmed with normal pluripotency and karyotype.


Assuntos
Células-Tronco Embrionárias Humanas , Células-Tronco Pluripotentes , Humanos , Sistemas CRISPR-Cas/genética , Nociceptores/metabolismo , Linhagem Celular , Canais de Cátion TRPV/genética , Canais de Cátion TRPV/metabolismo , Células-Tronco Pluripotentes/metabolismo , Células-Tronco Embrionárias Humanas/metabolismo
4.
Adv Mater ; : e2303321, 2023 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-37540501

RESUMO

Double-stranded RNA (dsRNA) is a major impurity that can induce innate immune responses and cause adverse drug reactions. Removing dsRNA is an essential and non-trivial process in manufacturing mRNA. Current methods for dsRNA elimination use either high-performance liquid chromatography or microcrystalline cellulose, rendering the process complex, expensive, toxic, and/or time-consuming. This study introduces a highly efficient and ultrafast method for dsRNA elimination using natural wood-derived macroporous cellulose (WMC). With a naturally formed large total pore area and low tortuosity, WMC removes up to 98% dsRNA within 5 min. This significantly shortens the time for mRNA purification and improves purification efficiency. WMC can also be filled into chromatographic columns of different sizes and integrates with fast-protein liquid chromatography for large-scale mRNA purification to meet the requirements of mRNA manufacture. This study further shows that WMC purification improves the enhanced green fluorescent protein mRNA expression efficiency by over 28% and significantly reduces cytokine secretion and innate immune responses in the cells. Successfully applying WMC provides an ultrafast and efficient platform for mRNA purification, enabling large-scale production with significant cost reduction.

5.
Br J Pharmacol ; 180(23): 3024-3044, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37377111

RESUMO

BACKGROUND AND PURPOSE: Our recent studies have shown that flavin adenine dinucleotide (FAD) exerts cardiovascular protective effects by supplementing short-chain acyl-CoA dehydrogenase (SCAD). The current study aimed to elucidate whether riboflavin (the precursor of FAD) could improve heart failure via activating SCAD and the DJ-1-Keap1-Nrf2 signalling pathway. EXPERIMENTAL APPROACH: Riboflavin treatment was given to the mouse transverse aortic constriction (TAC)-induced heart failure model. Cardiac structure and function, energy metabolism and apoptosis index were assessed, and relevant signalling proteins were analysed. The mechanisms underlying the cardioprotection by riboflavin were analysed in the cell apoptosis model induced by tert-butyl hydroperoxide (tBHP). KEY RESULTS: In vivo, riboflavin ameliorated myocardial fibrosis and energy metabolism, improved cardiac dysfunction and inhibited oxidative stress and cardiomyocyte apoptosis in TAC-induced heart failure. In vitro, riboflavin ameliorated cell apoptosis in H9C2 cardiomyocytes by decreasing reactive oxygen species (ROS). At the molecular level, riboflavin significantly restored FAD content, SCAD expression and enzymatic activity, activated DJ-1 and inhibited the Keap1-Nrf2/HO1 signalling pathway in vivo and in vitro. SCAD knockdown exaggerated the tBHP-induced DJ-1 decrease and Keap1-Nrf2/HO1 signalling pathway activation in H9C2 cardiomyocytes. The knockdown of SCAD abolished the anti-apoptotic effects of riboflavin on H9C2 cardiomyocytes. DJ-1 knockdown hindered SCAD overexpression anti-apoptotic effects and regulation on Keap1-Nrf2/HO1 signalling pathway in H9C2 cardiomyocytes. CONCLUSIONS AND IMPLICATIONS: Riboflavin exerts cardioprotective effects on heart failure by improving oxidative stress and cardiomyocyte apoptosis via FAD to stimulate SCAD and then activates the DJ-1-Keap1-Nrf2 signalling pathway.


Assuntos
Butiril-CoA Desidrogenase , Insuficiência Cardíaca , Animais , Camundongos , Butiril-CoA Desidrogenase/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Flavina-Adenina Dinucleotídeo/metabolismo , Flavina-Adenina Dinucleotídeo/farmacologia , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/metabolismo , Estresse Oxidativo , Apoptose , Miócitos Cardíacos/metabolismo
6.
Mol Ther Nucleic Acids ; 32: 445-453, 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37181450

RESUMO

High purity is essential in mRNA-based therapeutic applications. A major contaminant of in vitro-transcribed (IVT) mRNA manufacturing is double-stranded RNA (dsRNA), which can induce severe anti-viral immune responses. Detection methods, such as agarose gel electrophoresis, ELISA, and dot-blot assay, are used to detect the existence of dsRNA in IVT mRNA products. However, these methods are either not sensitive enough or time-consuming. To overcome these challenges, we develop a rapid, sensitive, and easy-to-implement colloidal gold nanoparticle-based lateral flow strip assay (LFSA) with sandwich format for the detection of dsRNA from IVT process. dsRNA contaminant can be determined visually on the test strip or quantitatively with a portable optical detector. This method allows for a 15 min detection of N1-methyl-pseudouridine (m1Ψ)-containing dsRNA with a detection limit of 69.32 ng/mL. Furthermore, we establish the correlation between the LFSA test results and the immune response caused by dsRNA in mice. The LFSA platform allows the rapid, sensitive, and quantitative monitoring of purity in massive IVT mRNA products and aids for the prevention of immunogenicity by dsRNA impurities.

7.
ACS Chem Neurosci ; 14(4): 766-772, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36704945

RESUMO

Salvia miltiorrhiza Bunge (S. miltiorrhiza) is a traditional Chinese medicine that has been widely used in the treatment of various central nervous system (CNS) diseases. However, the mechanism of active components of S. miltiorrhiza crossing the blood-brain barrier (BBB) stays unclear. The purpose of this study was to clarify the mechanism of four ingredients of S. miltiorrhiza, i.e., cryptotanshinone (CTS), dihydrotanshinone I (DTS I), tanshinone IIA (TS IIA), and protocatechuic acid (PCTA) crossing the BBB using the in vitro model. The bidirectional transport of detectable components was tested using the MDCK-MDR1 monolayers. High performance liquid chromatography coupled to triple-quadrupole mass spectrometry (HPLC-QQQ/MS) was used to detect the content changes of S. miltiorrhiza monomer components transported through the BBB. Papp of CTS, DTS I, and TS IIA in the absorption direction were lower than 1.0 × 10-6 cm/s, suggesting that these components were poorly absorbed, while PCTA was moderately absorbed through the BBB. The efflux ratio (ER) of CTS, DTS I, TS IIA, and PCTA were 1.65, 0.92, 4.27, and 1.48, respectively. After treatment with P-gp inhibitor tariquidar, the efflux ratio (ER) of CTS, DTS I, and TS IIA significantly decreased from 1.65 to 1.27, 0.92 to 0.36, and 4.27 to 0.86 (P < 0.05), respectively, while the efflux ratio of PCTA decreased without significance from 1.48 to 0.80. This indicated that the transport of CTS, DTS I, and TS IIA might be related to P-gp. TS IIA and CTS were verified as the substrates of P-gp among the four components since the ER of TS IIA and CTS is greater than 1.5. For PCTA and DTS I, their transport mechanism may be related to other transport proteins or passive transport. The results were confirmed by molecular docking in our current work. In this study, an in vitro BBB model was established and applied to the trans-BBB study of active components in S. miltiorrhiza for the first time, which may provide a basis for further research on the mechanisms of other TCMs in treating CNS diseases and is of great significance in promoting the rational and effective use of TCMs.


Assuntos
Barreira Hematoencefálica , Salvia miltiorrhiza , Animais , Humanos , Ratos , Subfamília B de Transportador de Cassetes de Ligação de ATP , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Barreira Hematoencefálica/metabolismo , Simulação de Acoplamento Molecular , Ratos Sprague-Dawley , Salvia miltiorrhiza/química , Salvia miltiorrhiza/metabolismo , Linhagem Celular
8.
World J Clin Cases ; 10(33): 12422-12429, 2022 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-36483805

RESUMO

BACKGROUND: Allergic cutaneous vasculitis (ACV) is a difficult disease to treat. At present, there is no effective treatment for this condition. Traditionally, immunosuppressants and hormones have been primarily used in its management, but the treatment effect is suboptimal, and it has several side effects. CASE SUMMARY: We present the case of a 19-year-old woman who presented at our hospital with a four-year history of symmetric skin lesions mainly affecting her lower extremities. She had previously undergone treatment with prednisolone acetate, cetirizine hydrochloride, and loratadine tablets but had not experienced any relief in her condition. Thereafter, she was treated with oral traditional Chinese medicine. Her skin damage gradually improved within two months of treatment initiation. After six months, the skin ulcers had completely subsided. No evidence of skin ulcer recurrence was observed during the subsequent follow-up. This report presents the first case of a female patient who received oral Danggui Sini decoction for the treatment of ACV. CONCLUSION: Danggui Sini decoction may be a promising oral treatment for ACV patients.

9.
Neuropsychiatr Dis Treat ; 18: 2171-2179, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36187561

RESUMO

Background: The number of patients with prolonged disorders of consciousness (pDOC) is increasing. However, its clinical treatment remains challenging. To date, no studies have reported the effect of vagus nerve modulation (VNM) using repetitive transcranial magnetic stimulation (rTMS) in patients with pDOC. We aimed to evaluate the effect of vagus nerve magnetic modulation (VNMM) on pDOC patients. Methods: We performed VNMM in 17 pDOC patients. The Revised Coma Recovery Scale (CRS-R), Glasgow scale (GCS), somatosensory evoked potentials (SEP) and brainstem auditory evoked potentials (BAEP) were assessed before and after treatment. Results: Both CRS-R and GCS results showed significant improvement in p DOC patients after VNMM treatment. The CRS-R improved from 7.88 ± 2.93 to 11.53 ± 4.94. The GCS score also improved from 7.65 ± 1.9 to 9.18 ± 2.65. The number of BAEP grades I increased from 3 to 5 after treatment. The number of BAEP grades I increased from 3 to 5, grade II increased by 1, and grade III decreased from 4 to 1. Conclusion: This study provides a preliminary indication of the potential of VNMM in the rehabilitation of pDOC patients. It provides the basis for a Phase 2 or Phase 3 study of VNMM in patients with pDOC.

10.
Acta Pharm Sin B ; 12(7): 3113-3123, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35865104

RESUMO

P-glycoprotein (P-gp) highly expressed in cancer cells can lead to multidrug resistance (MDR) and the combination of anti-cancer drugs with P-gp inhibitor has been a promising strategy to reverse MDR in cancer treatment. In this study, we established a label-free and detergent-free system combining surface plasmon resonance (SPR) biosensor with styrene maleic acid (SMA) polymer membrane proteins (MPs) stabilization technology to screen potential P-gp inhibitors. First, P-gp was extracted from MCF-7/ADR cells using SMA polymer to form SMA liposomes (SMALPs). Following that, SMALPs were immobilized on an SPR biosensor chip to establish a P-gp inhibitor screening system, and the affinity between P-gp and small molecule ligand was determined. The methodological investigation proved that the screening system had good specificity and stability. Nine P-gp ligands were screened out from 50 natural products, and their affinity constants with P-gp were also determined. The in vitro cell verification experiments demonstrated that tetrandrine, fangchinoline, praeruptorin B, neobaicalein, and icariin could significantly increase the sensitivity of MCF-7/ADR cells to Adriamycin (Adr). Moreover, tetrandrine, praeruptorin B, and neobaicalein could reverse MDR in MCF-7/ADR cells by inhibiting the function of P-gp. This is the first time that SMALPs-based stabilization strategy was applied to SPR analysis system. SMA polymer can retain P-gp in the environment of natural lipid bilayer and thus maintain the correct conformation and physiological functions of P-gp. The developed system can quickly and accurately screen small molecule ligands of complex MPs and obtain affinity between complex MPs and small molecule ligands without protein purification.

11.
Front Neurosci ; 16: 900868, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35801181

RESUMO

Background and Purpose: Optimal blood pressure management of patients with basilar artery occlusion (BAO) remains uncertain. This study aimed to investigate the relationship between admission blood pressure and clinical outcomes following acute BAO. Materials and Methods: We analyzed data from a prospective, nationwide cohort study of 829 patients with acute BAO and posterior circulation stroke. Baseline systolic blood pressure (SBP) and diastolic blood pressure (DBP) were recorded on admission. The primary outcome was neurological functional disability based on the modified Rankin Scale (mRS) score at 90 days. Secondary outcomes included successful reperfusion, mortality within 90 days, and National Institutes of Health Stroke Scale (NIHSS) score change. Multivariable logistic regression was used to assess the associations of SBP and DBP with outcomes. Results: We include 829 patients with posterior circulation stroke and BAO between January 2014 and May 2019. Multivariate logistic regression showed high SBP and DBP correlated with unfavorable outcomes. The favorable prognosis (mRS ≤ 3) rates of the low-to-normal and the hypertension groups were 34.8 and 23.9%, respectively. After adjusting for covariates, multivariate regression analysis demonstrated that an SBP > 140 mm Hg was associated with a poor functional outcome [adjusted OR (aOR), 1.509; 95% CI, 1.130-2.015] and mortality at 90 days (aOR, 1.447; 95% CI, 1.055-1.985), and predicted a lower probability of successful reperfusion (aOR, 0.550; 95% CI, 0.389-0.778). The risk of symptomatic intracranial hemorrhage and the NIHSS score at 24 h were not significantly different between the high SBP group and the low-to-normal blood pressure group. And the results for DBP were similar. Conclusion: Among patients with acute BAO, higher systolic or DBP at admission was associated with poor stroke outcomes and had a lower probability of successful reperfusion, with an increased risk of mortality. Trail Registration: [http://www.chictr.org.cn], [ChiCTR1800014759].

12.
Nano Lett ; 21(13): 5859-5866, 2021 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-34152779

RESUMO

RNA interference, which involves the delivery of small interfering RNA (siRNA), has been used to validate target genes, to understand and control cellular metabolic pathways, and to use as a "green" alternative to confer pest tolerance in crops. Conventional siRNA delivery methods such as viruses and Agrobacterium-mediated delivery exhibit plant species range limitations and uncontrolled DNA integration into the plant genome. Here, we synthesize polyethylenimine-functionalized gold nanoclusters (PEI-AuNCs) to mediate siRNA delivery into intact plants and show that these nanoclusters enable efficient gene knockdown. We further demonstrate that PEI-AuNCs protect siRNA from RNase degradation while the complex is small enough to bypass the plant cell wall. Consequently, AuNCs enable gene knockdown with efficiencies of up 76.5 ± 5.9% and 76.1 ± 9.5% for GFP and ROQ1, respectively, with no observable toxicity. Our data suggest that AuNCs can deliver siRNA into intact plant cells for broad applications in plant biotechnology.


Assuntos
Ouro , Células Vegetais , Linhagem Celular Tumoral , Técnicas de Silenciamento de Genes , Polietilenoimina , RNA Interferente Pequeno/genética
13.
Chem Commun (Camb) ; 57(45): 5511-5513, 2021 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-33988635

RESUMO

We report a filamentous chaperone-based protein hydrogel capable of stabilizing enzymes against thermal inactivation. The hydrogel backbone consists of a thermostable chaperone protein, the gamma-prefoldin (γPFD) from Methanocaldococcus jannaschii, which self-assembles into a fibrous structure. Specific coiled-coil interactions engineered into the wildtype γPFD trigger the formation of a cross-linked network of protein filaments. The structure of the filamentous chaperone is preserved through the designed coiled-coil interactions. The resulting hydrogel enables entrapped enzymes to retain greater activity after exposure to high temperatures, presumably by virtue of the inherent chaperone activity of the γPFD.


Assuntos
Hidrogéis/química , Methanocaldococcus/química , Chaperonas Moleculares/química , Reagentes de Ligações Cruzadas/química , Temperatura Alta , Ligação Proteica , Conformação Proteica , Multimerização Proteica , Estabilidade Proteica
14.
EClinicalMedicine ; 32: 100746, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33644722
15.
Anal Bioanal Chem ; 413(7): 2021-2031, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33528601

RESUMO

A novel surface plasmon resonance-based P-gp ligand screening system (SPR-PLSS) combined with lentiviral particle (LVP) stabilization strategy was constructed to screen out potential P-gp inhibitors from natural products. Firstly, we constructed LVPs with high and low expression levels of P-gp. The LVPs can ensure the natural conformation of P-gp based on the principle that LVPs germinated from packaging cells will contain cell membrane fragments and P-gp they carry. Then the LVPs with high P-gp expression for active channel and LVPs with low P-gp expression for reference channel were immobilized on CM5 chip respectively. The affinity detection was thus carried out with the signal reduction on the two channels. The P-gp inhibitors, Valspodar (Val) and cyclosporin (CsA), as positive compounds, were detected to characterize the chip's activity, and the KD of Val and CsA were 14.09 µM and 16.41 µM, respectively. Forty compounds from natural product library were screened using the SPR CM5 chip, and magnolol (Mag), honokiol (Hon), and resveratrol (Res) were screened out as potential P-gp ligands, showing a significant response signal. This work presented a novel P-gp ligand screening system based on LVP-immobilized biosensor to rapidly screen out P-gp ligands from natural product library. Compared with traditional cell experiments which the screening time may take up to several days, our method only takes several hours. Furthermore, this study has also provided solid evidences to support that some complicated membrane proteins would apply to the lentivirus-based SPR screening system.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/química , Técnicas Biossensoriais , Lentivirus/metabolismo , Ressonância de Plasmônio de Superfície , Animais , Produtos Biológicos , Compostos de Bifenilo/análise , Linhagem Celular Tumoral , Sobrevivência Celular , Química Farmacêutica/métodos , Ciclosporina/análise , Ciclosporinas/análise , Cães , Avaliação Pré-Clínica de Medicamentos/métodos , Células HEK293 , Humanos , Técnicas In Vitro , Cinética , Ligantes , Lignanas/análise , Células MCF-7 , Células Madin Darby de Rim Canino , Proteínas de Membrana/metabolismo , Resveratrol/análise
16.
Proc Natl Acad Sci U S A ; 118(5)2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33495347

RESUMO

Multicolor single-molecule tracking (SMT) provides a powerful tool to mechanistically probe molecular interactions in living cells. However, because of the limitations in the optical and chemical properties of currently available fluorophores and the multiprotein labeling strategies, intracellular multicolor SMT remains challenging for general research studies. Here, we introduce a practical method employing a nanopore-electroporation (NanoEP) technique to deliver multiple organic dye-labeled proteins into living cells for imaging. It can be easily expanded to three channels in commercial microscopes or be combined with other in situ labeling methods. Utilizing NanoEP, we demonstrate three-color SMT for both cytosolic and membrane proteins. Specifically, we simultaneously monitored single-molecule events downstream of EGFR signaling pathways in living cells. The results provide detailed resolution of the spatial localization and dynamics of Grb2 and SOS recruitment to activated EGFR along with the resultant Ras activation.


Assuntos
Nanoporos , Proteínas/metabolismo , Imagem Individual de Molécula , Animais , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Fator de Crescimento Epidérmico/farmacologia , Células HeLa , Humanos , Espaço Intracelular/metabolismo , Camundongos , Linfócitos T/metabolismo
17.
J Stroke Cerebrovasc Dis ; 30(1): 105424, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33221611

RESUMO

BACKGROUND AND PURPOSE: Neo-atherosclerosis plays a vital role in the incidence of in-stent restenosis (ISR) after extracranial and intracranial artery stenting, and Apolipoprotein (ApoE) gene polymorphism has been reported to be closely related to the occurrence and development of atherosclerosis. The present study aims to investigate the association between ApoE gene polymorphism and ISR after extracranial and intracranial artery stenting. METHODS: A total of 169 patients with successful stent implantation were included in this study. ApoE genotypes were obtained during the postoperative follow-up. Color Doppler ultrasonography of cervical artery or head and neck CT angiography (CTA) was performed on the 1,3,6 and 12 months and then yearly in the clinical follow-up. Multivariate Cox regression analysis of independent risk factors was performed to evaluate the ISR. Kaplan-Meier curves were generated to compare the restenosis -free rate among the patients with different ApoE genotypes. RESULTS: Of the 169 patients, 43 (43/169, 25.4%) developed ISR after a mean follow-up period of 10.4 months (1-35 months). Multivariate analysis showed that genotype E4/E4 (hazard ratio 3.305, P = 0.031, 95% confidence interval 1.118-9.773) and degree of stenosis >90% (hazard ratio 5.083, P = 0.001, 95% confidence interval 1.938-13.327) were significant determinants of ISR. CONCLUSION: ApoE gene polymorphism is closely related to the incidence of ISR after extracranial and intracranial artery stenting, and the genotype E4/E4 is an independent risk factor for ISR.


Assuntos
Apolipoproteínas E/genética , Estenose das Carótidas/terapia , Procedimentos Endovasculares/efeitos adversos , Procedimentos Endovasculares/instrumentação , AVC Isquêmico/terapia , Polimorfismo Genético , Stents , Idoso , Estenose das Carótidas/diagnóstico por imagem , Estenose das Carótidas/genética , Bases de Dados Factuais , Feminino , Humanos , AVC Isquêmico/diagnóstico por imagem , AVC Isquêmico/genética , Masculino , Pessoa de Meia-Idade , Intervalo Livre de Progressão , Recidiva , Sistema de Registros , Estudos Retrospectivos , Medição de Risco , Fatores de Risco
18.
Drug Metab Dispos ; 48(10): 972-979, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32816867

RESUMO

As a member of the ATP-dependent membrane transport proteins, P-Glycoprotein (P-gp) is known to pump substrates out of cells using an ATP-dependent mechanism. The overexpression of P-gp in tumor cells reduces the intracellular drug concentrations, which decreases the efficacy of extensive antitumor drugs and leads to multidrug resistance (MDR) clinically. The combination of anticancer drugs with P-gp inhibitor has been an attractive and promising strategy to reverse MDR in cancer treatment. However, nonspecific or nonselective distribution of P-gp inhibitors to nontarget organs is one of the most fatal shortcomings in clinical application. Thus, there is an urgent need for effective and nontoxic MDR reversal agents, particularly in P-gp-mediated MDR. Traditional Chinese medicine (TCM) natural products may prove less toxic for use in P-gp inhibition to promote MDR reversal. P-gp modulatory effects have been previously demonstrated using selected TCM, including the flavonoid, alkaloid, terpenoid, coumarin, and quinonoid compounds, and some Chinese medicine extracts. Moreover, the approaches for screening active components from TCM are necessary, and these approaches face challenges. At present, the approaches to study the interaction between TCM and P-gp are divided into in vitro, in vivo, and in silico methods. This review will provide an overview and update on the role of TCM in overcoming P-gp-mediated MDR and the approaches to study the interaction between TCM and P-gp. SIGNIFICANCE STATEMENT: This review summarized some traditional Chinese medicines identified to have a modulatory effect on P-gp, including flavonoids, alkaloids, terpenoids, coumarins, quinonoid compounds, and some Chinese medicine extracts, and it introduced possible mechanisms. The approaches to study the interaction between TCM and P-gp are divided into in vitro, in vivo, and in silico methods.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Medicamentos de Ervas Chinesas/farmacologia , Neoplasias/tratamento farmacológico , Subfamília B de Transportador de Cassetes de Ligação de ATP/antagonistas & inibidores , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Antineoplásicos Fitogênicos/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Linhagem Celular Tumoral , Avaliação Pré-Clínica de Medicamentos , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Medicamentos de Ervas Chinesas/uso terapêutico , Interações Ervas-Drogas , Humanos , Simulação de Acoplamento Molecular , Neoplasias/patologia
20.
Proc Natl Acad Sci U S A ; 116(16): 7899-7904, 2019 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-30923112

RESUMO

We present a simple nanopore-electroporation (NanoEP) platform for delivery of nucleic acids, functional protein, and Cas9 single-guide RNA ribonucleoproteins into both adherent and suspension cells with up to 80% delivery efficiency and >95% cell viability. Low-voltage electric pulses permeabilize a small area of cell membrane as a cell comes into close contact with the nanopores. The biomolecule cargo is then electrophoretically drawn into the cells through the nanopores. In addition to high-performance delivery with low cell toxicity, the NanoEP system does not require specialized buffers, expensive materials, complicated fabrication processes, or cell manipulation; it simply consists of a generic nanopore-embedded water-filter membrane and a low-voltage square-wave generator. Ultimately, the NanoEP platform offers an effective and flexible method for universal intracellular delivery.


Assuntos
Técnicas Citológicas/métodos , Eletroporação/métodos , Edição de Genes/métodos , Nanoporos , Transfecção/métodos , Sobrevivência Celular , Eletroporação/instrumentação , Desenho de Equipamento , Células HeLa , Humanos , Espaço Intracelular/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...